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ABSTRACT

Aromatic tert-butylsulfinyl ketimines bearing a suitable Michael acceptor at the ortho position readily undergo an intramolecular conjugate
addition achieving indanone derivatives in good yields and complete diastereoselectivity.

The indane core, and specifically the indanone subunit, is
a common skeleton in both natural products and synthetic
drugs.1,2 In recent years, several approaches for the asym-
metric construction of the indanone skeleton have been re-
ported.3,4Amongthem, thehydroacylationofo-formylstyrenes
I (arising from the C1�C2 disconnection) developed by
Morehead3b and the isomerization ofR-arylpropargyl alcohols

II (arising fromtheC3�C4disconnection) followedbycycliza-
tion reportedbyHayashi3c deserve specialmention (Scheme1).
The alternative disconnection C2�C3 would lead to

readily available o-functionalized acetophenone deriva-
tives III. Despite its simplicity, the asymmetric variant
of this intramolecular Michael reaction has so far not
been reported,5 to the best of our knowledge. Moreover,
the intramolecular version of the asymmetric Michael
reaction is notably less developed than its intermolecular
counterpart.6†Author to whom correspondence regarding X-ray analysis should be

addressed.
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In a recent report, we described a new nucleophilic addi-
tion (AN)/IntramolecularAza-MichaelReaction (IMAMR)
tandem process for the stereoselective synthesis of 1,3-
disubstituted fluorinated isoindolines (Scheme 2).7 For
this aim, we used o-functionalized tert-butanesulfinyl8

aldimines analogous to III.

Complementary to this work, we decided to study
the reactivity of the corresponding ketimines toward
the Ruppert�Prakash reagent (CF3TMS)9 targeting 1,3-
disubstituted isoindolines featuring a quaternary stereo-
center. When model substrate 1a was subjected to the
optimized conditions obtained for the tandem AN/IM-
AMR with aldimines, the formation of the expected
isoindoline remained unobserved.10 Instead the only

isolated product was the indanone derivative 2a arising
from an intramolecular Michael reaction through the
imine R-position without incorporation of the CF3 moi-
ety.Moreover, 2a is afforded in good yield and as a single
diastereoisomer, as judged by 1H NMR (Scheme 3).

The difference in reactivity between aldimines and
ketimines can be rationalized by a double effect: first,
the inherent lower reactivity of ketimines toward nucleo-
philes such as CF3TMS is due to their diminished electro-
philicity togetherwith a higher steric bulk;11 second, acidic
protons are present at the R-position, providing an alter-
native reaction pathway. Thus, the “CF3

�” anion formed
upon mixing the Ruppert�Prakash reagent with a fluor-
ine source acts as a base,12 while in the case of aldimines it
behaves as a nucleophile.13 In fact, the addition of fluor-
oalkyl carbanionswas unprecedented until very recently.10

Only the use of stabilized carbanions, derived from fluoro-
or difluoromethyl phenylsulfone, is effective in the fluor-
oalkylation of ketimines. The presence of the sulfone
group renders a less basic carbanion. The balance be-
tween nucleophilicity and basicity may account for the
different behavior.
In order to establish the relative configuration of the new

stereocenter by X-ray analysis, suitable crystals of 2a were
obtained (Figure 1).14 Thus, the relative stereochemistry of
the newly created stereocenter in 2awas established to beR.

Scheme 1. Methods for the Asymmetric Construction of the
Indanone Ring

Scheme 2. Tandem AN/IMAMR for the Asymmetric Synthesis
of Fluorinated Isoindolines

Scheme 3. Preliminary Result Regarding the Reactivity of 1a
towards CF3TMS
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To explain the stereochemical outcome observed for
this transformation, we proposed the following transition
state (Figure 2).15

Given the interest of this unprecedented transforma-
tion,wedecided to performanoptimization of the reaction
conditions (Table 1).
Interestingly, the use of some common bases for

enolate formation such as LiHMDS, NaHMDS, LDA,
or tBuOK led to significant lower yields than the combina-
tion CF3TMS/TBAT (Table 1, entries 2�5) even after
temperature optimization for each base. For the base
leading to the best results, namely LiHMDS, a solvent
screening was carried out but no beneficial effect was
obtained (Table 1, entries 6, 7). Finally, among the fluoride
sources only the most basic TBAF is able to promote the
transformation on its own (Table 1, entry 8), although in
comparable yield with the initial conditions (CF3TMS/
TBAT). Thus, we have found two sets of reaction condi-
tions leading to the asymmetric intramolecular Michael
addition in good yield and diastereoselectivity: CF3TMS/
TBAT, THF, �55 to �20 �C and TBAF, THF, �55
to �20 �C (Table 1, entries 1 and 8).16

With these optimized reaction conditions in hand, we
turned to evaluate the scopeof the transformation (Table 2).
The reaction showed broad scope with regard to the sub-

stitution on the aromatic ring as well as the ester group. In
all cases, despite the electronic character of the aromatic

ring or the steric bulk at the ester moiety the yields were
moderate to high and, remarkably, complete diastereocon-
trol was observed (Table 2).

Figure 1. ORTEP diagram for 2a.

Figure 2. Proposed transition state.

Table 1. Optimization of the Reaction Conditions

entry base solv

temp

(�C)
yield

(%) dr

1 CF3TMS/

TBATa

THF �55 to �20 86 >20:1

2 LiHMDS THF �78 to rt 65 >20:1

3 NaHMDS THF �78 to �20 46 >20:1

4 LDA THF �78 to rt 33 >20:1

5 tBuOK THF 0 20 >20:1

6 LiHMDS DCM �78 to �20 30 >20:1

7 LiHMDS Tol-H �78 to �20 36 >20:1

8 TBAF THF �55 to �20 76 >20:1

9 CsF THF �55 to �20 SM �
aThe use of fluoride sources other than TBAT (i.e., TBAF or CsF)

proved to be less efficient.

Table 2. Reaction Scope

entry X Y R product

yield

(%)a dr

1 H H Et 2a 86 (76) >20:1

2 MeO H Et 2b 52 (65) >20:1

3 CF3 H Et 2c 63 (61) >20:1

4 F H Et 2d 70 (80) >20:1

5 O-CH2-O Et 2e 64 (54) >20:1

6 H Me Et 2f 63 (82) >20:1

7 H H tBu 2g 73 (88) >20:1

8 H H Bn 2h 73 >20:1

9 H H iPr 2i 72 (82) >20:1

aYields in parentheses refer to reactions performed with TBAF
(1.2 equiv).

(16) In an attempt to rationalize the performance of these uncommon
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At this stage, the hydrolysis of the chiral auxiliary af-
fords asymmetric 3-substituted indanones, a challenging
structuralmotif. Thiswas achieved by using the conditions
reported by Liu et al. (Table 3).17 From this table, we can
conclude that, in most cases, epimerization does not take
place to a noticeable extent. The enantiomeric excesses ob-
tained (86�96% ee) are, in all cases, comparable to those
reported by Morehead3b and Hayashi.3c

In order to expand the synthetical utility of our meth-
odology, we carried out the chemoselective reduction of
the imino group giving rise to δ-amino acid derivatives.19

Under the first conditions essayed (NaBH4,MeOH, 0 �C),
a modest 5:1 dr was achieved. This result could be sig-
nificantly improved by changing the reaction conditions

to wet THF at �78 �C. Under these new conditions, only
one diastereoisomer was observed in the 1H NMR spec-
trum of the crude reaction (Scheme 4).20

δ-Amino acid derivative syn-4a21 can thus be stereo-
selectively achieved.22 Furthermore, the chiral auxiliary
has in turn been removed23 affording the free NH2

δ-amino ester syn-5a in 82%yield as the hydrochloride salt.

In conclusion, we have developed a new intramolecular
asymmetric Michael reaction of tert-butanesulfinyl keti-
mines for the diastereoselective synthesis of indanone de-
rivatives. The products have been obtained in good yields
and excellent diastereoselectivity. Remarkably, this trans-
formation is carried out more easily with nonobvious
bases such as CF3TMS/TBAT or TBAF. Indanones can
be obtained in high yields and optical purity by hydrolysis.
On the other hand, the diastereoselective reduction of the
sulfinime allows δ-amino acid derivatives to be afforded.
Further applications of this methodology are currently
being studied in our laboratories.
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Table 3. Removal of the Chiral Auxiliary

entry X Y product

yield

(%)

ee

(%)a

1 H H 3a 53 93

2 MeO H 3b 56 94

3 CF3 H 3c 67 86

4 F H 3d 46 96

5 O-CH2-O 3e 62 94

aDetermined by HPLC on chiral stationary phase using a Chiralcel
OD-H column (see ref 18).

Scheme 4. Chemoselective Reduction Leading to δ-Amino Acid
Derivatives

(19) For the use of δ-amino acids in the synthesis of β-turn containing
peptide hairpins, see: Rai, R.; Vasudev, P. G.; Ananda, K.; Raghothama,
S.; Shamala, N.; Karle, I. L.; Balaram, P.Chem.;Eur. J. 2007, 13, 5917.

(20) We also essayed the diastereodivergent reduction using L-selectride
as the reducing agent, but low yields (30%) and diastereoselectivities (5:1
dr) were achieved. The reversal diastereofacial selectivity in the reductions
of tert-butylsulfinilketimines by either NaBH4 or L-selectride has been
described: Colyer, J. T.; Andersen, N. G.; Tedrow, J. S.; Soukup, T. S.;
Faul, M. M. J. Org. Chem. 2006, 71, 6859.

(21) A cross-peak between the two methine protons in the NOESY
spectrum of 4a allowed assignment of the relative stereochemistry of the
new stereocenter. The stereochemical outcome is in agreement with the
chelated transition state suggested for reductions of tert-butanesulfinimides
with NaBH4 (see Supporting Information).

(22) For recent diastereoselective syntheses of δ-amino acids, see: (a)
S€unnemann, H. W.; Hofmeister, A.; Magull, J.; de Meijere, A. Chem.;
Eur. J. 2006, 12, 8336. (b) Garrido, N. M.; Garcı́a, M.; Dı́ez, D.; S�anchez,
M. R.; Sanz, F.; Urones, J. G. Org. Lett. 2008, 10, 1687.

(23) Liu, G.; Cogan, D. A.; Ellman, J. A. J. Am. Chem. Soc. 1997,
119, 9913.


